

HYPERBOLIC NUMBERS

The **hyperbolic** numbers are have the form x + jy where x, y are real numbers and $j^2 = 1$. We let \mathcal{H} denote the set of all hyperbolic numbers. If $a + jb, c + jd \in \mathcal{H}$ then

$$(a+jb)(c+jd) = ac + adj + jbc + j2bd = ac + bd + j(ad + bc).$$

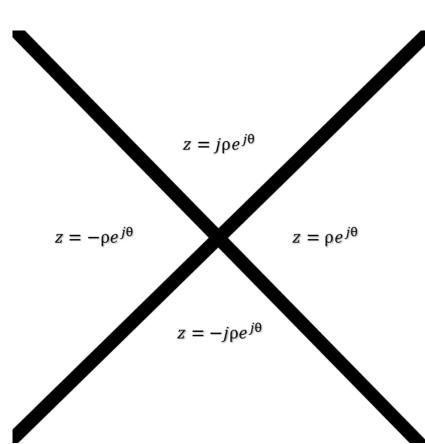
The map $\mathbf{M}: \mathcal{H} \to M_{\mathcal{H}}$ defined below is an algebra isomorphism:

$$\mathbf{M}(a+bj) = \left[\begin{array}{cc} a & b \\ b & a \end{array} \right]$$

Since det(A) = 0 if and only if A^{-1} does not exist we find $(a + jb)^{-1}$ does not exist whenever $det(\mathbf{M}(a+bj)) = a^2 - b^2 = 0$. These are the zero-divisors:

$$\mathbf{zd}(\mathcal{H}) = \{a + bj \mid a^2 = b^2\}$$

whereas the **units** are $\mathcal{H}^{\times} = \{a + bj \mid a^2 \neq b^2\}.$



We define the **hyperbolic power function** with the sectors above in mind:

 $\begin{cases} \pm \exp\left(c \operatorname{Log}(z)\right) \text{ when } z = \pm \rho e^{j\theta} \\ \pm j \exp\left(c \operatorname{Log}_{j}(z)\right) \text{ when } z = \pm j \rho e^{j\theta} \end{cases}$ $z^c = \langle$

where we define

$$Log(z) = \ln \sqrt{x^2 - y^2} + j \tanh^{-1}(y/x)$$
$$Log(z) = \ln \sqrt{y^2 - x^2} + j \tanh^{-1}(x/y)$$

Conjugation of z = x + jy by $\overline{z} = x - jy$.

$$\overline{z+w} = \overline{z} + \overline{w}$$
 & $\overline{z} \, \overline{w} = \overline{zu}$

Observe, if z = x + jy and $z\overline{z} = x^2 - y^2 \neq 0$ then

$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{x - jy}{x^2 - y^2}$$

The length of a hyperbolic number $||z|| = \sqrt{x^2 + y^2} \neq \sqrt{z\overline{z}}$. In fact, the norm of the hyperbolic numbers is submultiplicative: $||zw|| \leq \sqrt{2} ||z|| ||w||$. This makes analysis on \mathcal{H} more challenging than complex analysis.

Quadratic equations in \mathcal{H} have surprising behavior; $z^2 = 1$ is solved by $z = \pm 1, \pm j$ thus

$$z^{2} - 1 = (z - 1)(z + 1) = (z - j)(z + j)$$

factoring over \mathcal{H} is not unique. This algebra has implications for the solution of differential equations over \mathcal{H} :

Example: y'' - y = 0 has characteristic equation $\lambda^2 - 1 = 0$ thus $\lambda = \pm 1, \pm j$ are characteristic values and $y = e^z, e^{-z}, e^{jz}, e^{-jz}$ are solutions. These are linearly dependent in \mathcal{H} as:

$$e^{jz} = \frac{1}{2}(1+j)e^{z} + \frac{1}{2}(1-j)e^{-z} \& e^{-jz} = \frac{1}{2}(1+j)e^{-z} + \frac{1}{2}(1-j)e^{z}.$$

The condition $d_p f(vw) = d_p f(v)w$ is called *H*-linearity. We define the hyperbolic derivative by $f'(p) = df_p(1)$. Alternatively, we can define the derivative by a *deleted difference quotient*:

The Jacobian of an \mathcal{H} -differentiable function is in the regular representation of \mathcal{H} . Indeed, $J_f(p) = \mathbf{M}(f'(p))$. **Laplace-like equation for** *H*:

In complex analysis the CR-eqns for f = u + iv are given by $f_y =$ *if_x*. Then $f_{yy} = (f_y)_y = (if_x)_y = i(f_y)_x = i^2 f_{xx}$ then as $i^2 = -1$ we obtain the Laplace Equation $f_{xx} + f_{yy} = 0$. In contrast, for \mathcal{H} differentiable f = u + jv we derive

AN EXPLORATION OF THE GEOMETRY OF HYPERBOLIC MAPS

Audrick Pyronneau & Dr. James S. Cook, UWA Department of Mathematics

HYPERBOLIC CALCULUS

Differentiability over *H*:

Let $U \subseteq \mathcal{H}$ be an open set containing p. If $f : U \to \mathcal{H}$ is a function then we say f is \mathcal{H} -differentiable at p if there exists a linear function $d_p f : \mathcal{H} \to \mathcal{H}$ such that $d_p f(vw) = d_p f(v)w$ for all $v, w \in \mathcal{H}$ and

$$\lim_{h \to 0} \frac{f(p+h) - f(p) - d_p f(h)}{||h||} = 0.$$
 (1)

$$f'(p) = \lim_{\mathcal{H}^{\times} \ni z \to p} \frac{f(z) - f(p)}{z - p}$$

Since z = x + jy in \mathcal{H} we have $\{1, j\}$ as the basis for \mathcal{H} . Advanced calculus gives $d_p f(1) = (\partial_x f)(p)$ whereas $d_p f(j) = (\partial_y f)(p)$. Thus, as $d_p f(1) = d_p f(jj) = d_p f(j)j$,

$$\frac{df}{dz} = \frac{\partial f}{\partial x} = j\frac{\partial f}{\partial y}$$

If f = u + jv then $\partial_u f = (\partial_u f)j$ yields \mathcal{H} -Cauchy-Riemann Eqns:

$$u_x = v_y \& u_y = v_x \Rightarrow J_f = \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix} = \begin{bmatrix} u_x & v_x \\ v_x & u_x \end{bmatrix}.$$

$$f_{yy} = (f_y)_y = (jf_x)_y = j(f_y)_x = j^2 f_{xx} \quad \Rightarrow \quad f_{yy} = f_{xx}$$

This is a **speed one wave equation** (think of *y* as time and *x* as space).

If f = u + jv then both u and v are solutions of the wave equation. Component functions of *H*-differentiable function solve the wave equation.

Speed *c* **Wave Equation:**

Consider the wave equation $c^2 u_{xx} = u_{tt}$. Define:

$$\mathcal{W}_c = \{ x + kt \mid x, t \in \mathbb{R}, k^2 = c^2 \}$$

Observe W_c -differentiable f solve the speed-c wave equation:

$$k^2 = c^2 \quad \Rightarrow \quad c^2 u_{xx} = u_{tt}. \tag{2}$$

Since \mathcal{W}_c is isomorphic to $\mathbb{R} \times \mathbb{R}$ by $\Phi(x + kt) = (x + ct, x - ct)$ we can trade each \mathcal{W}_c -differentiable function $f : \mathcal{W}_c \to \mathcal{W}_c$ for a corresponding with a $\mathbb{R} \times \mathbb{R}$ differentiable function F via $f = \Phi^{-1} \circ F \circ \Phi$ where $F : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$. The structure of $\mathbb{R} \times \mathbb{R}$ -differentiable functions is rather simple; $F(a, b) = (F_1(a), F_2(b))$ where F_1, F_2 are differentiable functions on \mathbb{R} . Thus,

$$(x+kt) = \Phi^{-1}(F(\Phi(x+kt)))$$

$$= \Phi^{-1}(F_1(x+ct), F_2(x-ct))$$

$$= \frac{1}{2}(F_1(x+ct) + F_2(x-ct)) + \frac{k}{2c}(F_1(x+ct) - F_2(x-ct))$$
(3)

The above is the well-known d'Alembert's solution to the waveequation.

NON-CONFORMAL MAPPING

In hyperbolic calculus we can also study a hyperbolic differentiable map given by w = f(z). If $f : S \to T$ and we solve the **wave**equation on T subject to appropriate boundary conditions by Ψ = $\Psi(w)$ then $\phi(z) = \Psi(f(z))$ defines a solution of the wave equation on S with matching boundary conditions. This is the hyperbolic analog of conformal mapping. However, we should caution, hyperbolic maps do not preserve the angle between curves. For instance: $f(z) = \left(\frac{1}{2} + j\right) z$ maps the orthogonal grid on the left to the slanted grid on the right:

Strategy:

Conformal Mapping:

In complex analysis the technique of conformal mapping allows us to find interesting solution of Laplace's Equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$. For example, the map $f(z) = i\left(\frac{z+1}{1-z}\right)$ can be visualized by:



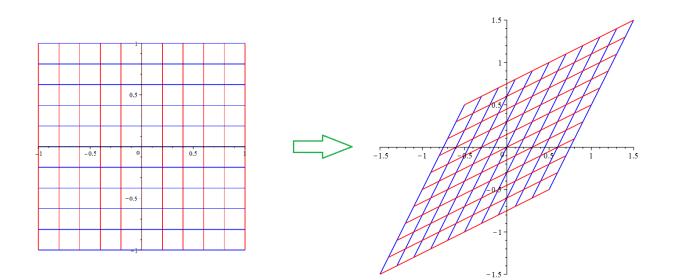
Laplace's Equation for the half-plane is with w = u + iv is solved by

$$\Psi(w) = \frac{1}{\pi} \cot^{-1}(v/u)$$

Notice, if w = u + iv = u we find $\Psi = 1$ for u < 0 and $\Psi = 0$ for u > 0. Then $\phi(z) = \Psi(f(z))$ gives a solution of Laplace's Equation on the disk where $\phi = 1$ on the upper semi-circle whereas $\phi = 0$ on the lower semi-circle.

• the term **conformal** means *angle-preserving*

Non-Conformal Mapping:

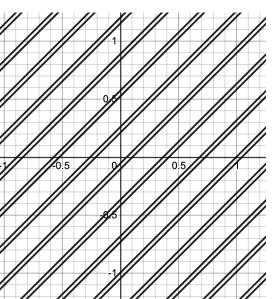


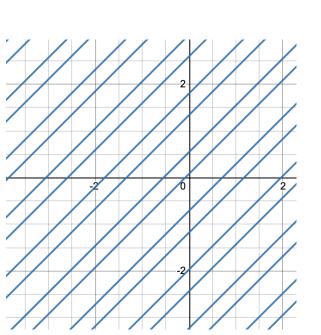
• Study component functions of hyperbolic differentiable maps to find solutions of the wave equation. Level curves of the component function are a convenient visual guide for the wide variety of functions possible in the function theory of \mathcal{H} . These will form *template* solutions for our *H*-conformal mapping technique,

• (Future Work) Study fractional linear transformations on \mathcal{H} as well as other maps to understand standard methods for the transport of curves on \mathcal{H} .

Wave Functions:

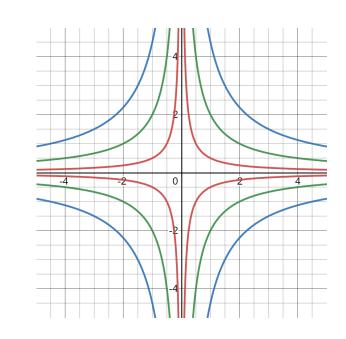
If f(z) = Asin(kx - wt) - jAsin(kx - wt) then the level curves of the component functions f(z) = Asin(kx - wt) and -Asin(kx - wt). Now what you can notice here is when rewritten a curiosity appears: A(1-j)sin(kx-wt). Visually:



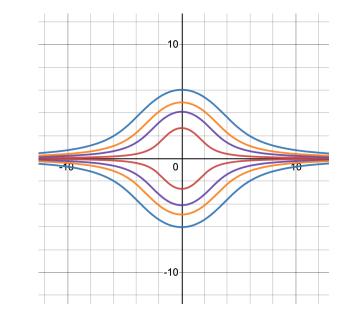


LEVEL CURVES OF HYPERBOLIC MAPS

Square Function:



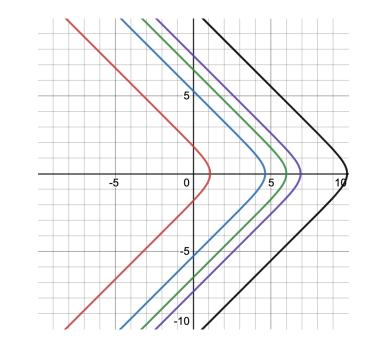
Cube Function: $3x^2y + y^3 = c_2$. Visually:



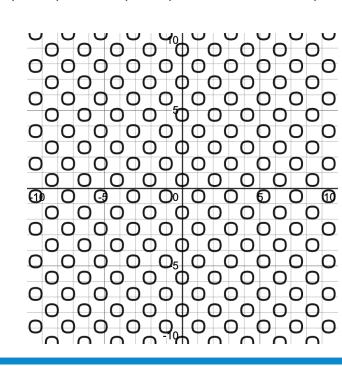
Log Function: If $f(z) = Log(z) = Log(x^2 - y^2) + jtanh^{-1}(y/x)$ then the level curves of the component functions f(z) = Log(z) are $Log(z) = Log(x^2 - y^2)$ and $(tanh^{-1})(y/x)$. Visually:



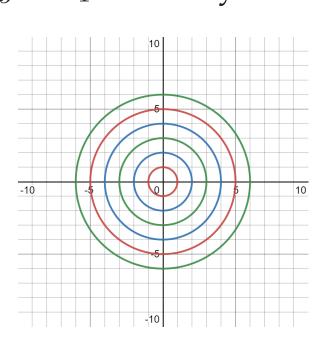
Exponential Function: Visually:



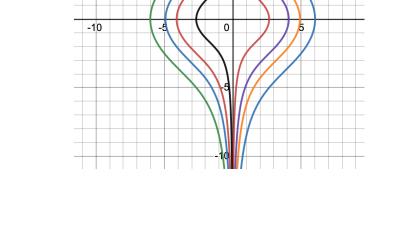
More Wave Functions:

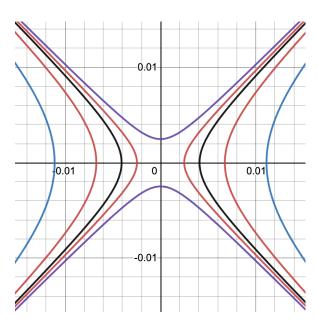


If $z^2 = x^2 + y^2 + 2jxy$ then the level curves of the component functions of $f(z) = z^2$ are $x^2 + y^2 = c_1$ and $2xy = c_1$. Visually:

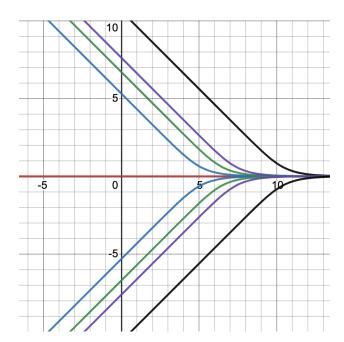


If $f(z) = z^3 = x^3 + 3xy^2 + j(3x^2y + y^3)$ then the level curves of the component functions $f(z) = z^3$ are $z^3 = x^3 + 3xy^2 = c_1$ and





If $f(z) = e^z = e^x(cosh(y) + jsinh(y))$ then the level curves of the component functions $f(z) = e^z$ are $e^z = e^x cosh(y)$ and $e^x sinh(y)$



When analyzing wave functions more carefully we discover that certain patterns arise naturally from solutions to the wave equation. f(z) = sin(kx)cos(wt) + jcos(kx)sin(wt) is a solution in which fascinating geometries arise from studying the level curves sin(kx)cos(wt) and cos(kx)sin(wt) respectfully. Visually:

