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HYPERBOLIC NUMBERS
The hyperbolic numbers are have the form x + jy where x, y are
real numbers and j2 = 1. We let H denote the set of all hyperbolic
numbers. If a+ jb, c+ jd ∈ H then

(a+ jb)(c+ jd) = ac+ adj + jbc+ j2bd = ac+ bd+ j(ad+ bc).

The map M : H → MH defined below is an algebra isomorphism:

M(a+ bj) =

[
a b
b a

]
Since det(A) = 0 if and only if A−1 does not exist we find (a+ jb)−1

does not exist whenever det(M(a+ bj)) = a2 − b2 = 0. These are the
zero-divisors:

zd(H) = {a+ bj | a2 = b2}

whereas the units are H× = {a+ bj | a2 ̸= b2}.

We define the hyperbolic power function with the sectors above in
mind:

zc =

{
±exp (cLog(z)) when z = ±ρejθ

±jexp
(
cLogj(z)

)
when z = ±jρejθ

where we define

Log(z) = ln
√
x2 − y2 + j tanh−1(y/x)

Log(z) = ln
√
y2 − x2 + j tanh−1(x/y)

Conjugation of z = x+ jy by z = x− jy.

z + w = z + w & z w = zw

Observe, if z = x+ jy and zz = x2 − y2 ̸= 0 then

1

z
=

z

zz
=

x− jy

x2 − y2

The length of a hyperbolic number ∥z∥ =
√

x2 + y2 ̸=
√
zz. In

fact, the norm of the hyperbolic numbers is submultiplicative:
∥zw∥ ≤

√
2∥z∥∥w∥. This makes analysis on H more challenging

than complex analysis.

Quadratic equations in H have surprising behavior; z2 = 1 is solved
by z = ±1,±j thus

z2 − 1 = (z − 1)(z + 1) = (z − j)(z + j)

factoring over H is not unique. This algebra has implications for the
solution of differential equations over H:
Example: y′′ − y = 0 has characteristic equation λ2 − 1 = 0 thus
λ = ±1,±j are characteristic values and y = ez, e−z, ejz, e−jz are
solutions. These are linearly dependent in H as:

ejz =
1

2
(1 + j)ez +

1

2
(1− j)e−z & e−jz =

1

2
(1 + j)e−z +

1

2
(1− j)ez.

HYPERBOLIC CALCULUS
Differentiability over H:
Let U ⊆ H be an open set containing p. If f : U → H is a function
then we say f is H-differentiable at p if there exists a linear function
dpf : H → H such that dpf(vw) = dpf(v)w for all v, w ∈ H and

lim
h→0

f(p+ h)− f(p)− dpf(h)

||h||
= 0. (1)

The condition dpf(vw) = dpf(v)w is called H-linearity. We define
the hyperbolic derivative by f ′(p) = dfp(1). Alternatively, we can
define the derivative by a deleted difference quotient:

f ′(p) = lim
H×∋z→p

f(z)− f(p)

z − p

Since z = x + jy in H we have {1, j} as the basis for H. Advanced
calculus gives dpf(1) = (∂xf)(p) whereas dpf(j) = (∂yf)(p). Thus,
as dpf(1) = dpf(jj) = dpf(j)j,

df

dz
=

∂f

∂x
= j

∂f

∂y
.

If f = u+ jv then ∂yf = (∂yf)j yields H-Cauchy-Riemann Eqns:

ux = vy & uy = vx ⇒ Jf =

[
ux uy

vx vy

]
=

[
ux vx
vx ux

]
.

The Jacobian of an H-differentiable function is in the regular repre-
sentation of H. Indeed, Jf (p) = M(f ′(p)).

Laplace-like equation for H:
In complex analysis the CR-eqns for f = u + iv are given by fy =
ifx. Then fyy = (fy)y = (ifx)y = i(fy)x = i2fxx then as i2 = −1
we obtain the Laplace Equation fxx + fyy = 0. In contrast, for H-
differentiable f = u+ jv we derive

fyy = (fy)y = (jfx)y = j(fy)x = j2fxx ⇒ fyy = fxx

This is a speed one wave equation (think of y as time and x as space).

If f = u+ jv then both u and v are solutions of the wave
equation. Component functions of H-differentiable func-
tion solve the wave equation.

Speed c Wave Equation:
Consider the wave equation c2uxx = utt. Define:

Wc = {x+ kt | x, t ∈ R, k2 = c2}

Observe Wc-differentiable f solve the speed-c wave equation:

k2 = c2 ⇒ c2uxx = utt. (2)

Since Wc is isomorphic to R × R by Φ(x + kt) = (x + ct, x − ct) we
can trade each Wc-differentiable function f : Wc → Wc for a corre-
sponding with a R × R differentiable function F via f = Φ−1 ◦F ◦Φ
where F : R × R → R × R. The structure of R × R-differentiable
functions is rather simple; F (a, b) = (F1(a), F2(b)) where F1, F2 are
differentiable functions on R. Thus,

f(x+ kt) = Φ−1(F (Φ(x+ kt))) (3)

= Φ−1(F1(x+ ct), F2(x− ct))

=
1

2
(F1(x+ ct) + F2(x− ct)) +

k

2c
(F1(x+ ct)− F2(x− ct))

The above is the well-known d’Alembert’s solution to the wave-
equation.

NON-CONFORMAL MAPPING
Conformal Mapping:
In complex analysis the technique of conformal mapping allows us
to find interesting solution of Laplace’s Equation ∂2u

∂x2 + ∂2u
∂y2 = 0. For

example, the map f(z) = i
(

z+1
1−z

)
can be visualized by:

Laplace’s Equation for the half-plane is with w = u+ iv is solved by

Ψ(w) =
1

π
cot−1(v/u)

Notice, if w = u + iv = u we find Ψ = 1 for u < 0 and Ψ = 0 for
u > 0. Then ϕ(z) = Ψ(f(z)) gives a solution of Laplace’s Equation
on the disk where ϕ = 1 on the upper semi-circle whereas ϕ = 0 on
the lower semi-circle.

• the term conformal means angle-preserving

Non-Conformal Mapping:
In hyperbolic calculus we can also study a hyperbolic differentiable
map given by w = f(z). If f : S → T and we solve the wave-
equation on T subject to appropriate boundary conditions by Ψ =
Ψ(w) then ϕ(z) = Ψ(f(z)) defines a solution of the wave equation
on S with matching boundary conditions. This is the hyperbolic
analog of conformal mapping. However, we should caution, hyper-
bolic maps do not preserve the angle between curves. For instance:
f(z) =

(
1
2 + j

)
z maps the orthogonal grid on the left to the slanted

grid on the right:

Strategy:

• Study component functions of hyperbolic differentiable maps
to find solutions of the wave equation. Level curves of the com-
ponent function are a convenient visual guide for the wide va-
riety of functions possible in the function theory of H. These
will form template solutions for our H-conformal mapping
technique,

• (Future Work) Study fractional linear transformations on H as
well as other maps to understand standard methods for the
transport of curves on H.

Wave Functions:
If f(z) = Asin(kx − wt) − jAsin(kx − wt) then the level curves of
the component functions f(z) = Asin(kx−wt) and −Asin(kx−wt).
Now what you can notice here is when rewritten a curiosity appears:
A(1− j)sin(kx− wt). Visually:

LEVEL CURVES OF HYPERBOLIC MAPS
Square Function:
If z2 = x2 + y2 + 2jxy then the level curves of the component func-
tions of f(z) = z2 are x2 + y2 = c1 and 2xy = c1. Visually:

Cube Function:
If f(z) = z3 = x3 + 3xy2 + j(3x2y + y3) then the level curves of
the component functions f(z) = z3 are z3 = x3 + 3xy2 = c1 and
3x2y + y3 = c2. Visually:

Log Function:
If f(z) = Log(z) = Log(x2−y2)+jtanh−1(y/x) then the level curves
of the component functions f(z) = Log(z) are Log(z) = Log(x2−y2)
and (tanh−1)(y/x). Visually:

Exponential Function:
If f(z) = ez = ex(cosh(y) + jsinh(y)) then the level curves of the
component functions f(z) = ez are ez = excosh(y) and exsinh(y)
Visually:

More Wave Functions:
When analyzing wave functions more carefully we discover that
certain patterns arise naturally from solutions to the wave equa-
tion. f(z) = sin(kx)cos(wt) + jcos(kx)sin(wt) is a solution in
which fascinating geometries arise from studying the level curves
sin(kx)cos(wt) and cos(kx)sin(wt) respectfully. Visually:


