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HYPERBOLIC NUMBERS

The hyperbolic numbers are have the form = + jy where z,y are
real numbers and j? = 1. We let H denote the set of all hyperbolic
numbers. If a + jb,c + jd € H then

(a + jb)(c+ jd) = ac + adj + jbc + j°bd = ac + bd + j(ad + bc).

The map M : H — My detined below is an algebra isomorphism:

. a b
M(a +bj) = [ D ]
Since det(A) = 0 if and only if A~! does not exist we find (a + jb) ™"

does not exist whenever det(M(a + bj)) = a® — b* = 0. These are the
zero-divisors:

zd(H) = {a+bj | a® = b*}
whereas the units are H* = {a + bj | a® # b*}.

We define the hyperbolic power function with the sectors above in
mind: |
) {iexp (cLog(z)) when z = +pe’?
A

+jexp (cLogj(z)) when z = +jpel?

where we define

Log(z) = In /22 — y2 + jtanh ™' (y/x)
Log(z) = In /42 — 22 + jtanh™ ' (z/y)

Conjugation of z = =z + jy by z = = — jy.

z4+w=Z+w & ZW = ZW

Observe, if z = x + jy and 2z = 22 — y* # 0 then

1 zZ  x—Jy
; —

2z 1 —y?

The length of a hyperbolic number ||z|| = /22 +y2? # V2z. In
fact, the norm of the hyperbolic numbers is submultiplicative:
lzw| < Vv2||z]|||w]]. This makes analysis on H more challenging
than complex analysis.

Quadratic equations in H have surprising behavior; 2z = 1 is solved
by z = £1, £7 thus

2 —l=(z-D(E+1D)=(z-j(=z+7)

factoring over ‘H is not unique. This algebra has implications for the
solution of differential equations over H:

Example: y’ — y = 0 has characteristic equation \* — 1 = 0 thus
A = =41, +5 are characteristic values and y = e?, e %,e/*, e 7% are
solutions. These are linearly dependent in H as:

' 1 - 1 -\ —2 —Jz 1 -\ —2 1 N\ 2
sz=§(l+j)ez+§(1—])€ & e 25(14—])6 +§(1—])e.
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HYPERBOLIC CALCULUS

Differentiability over H:

Let U C H be an open set containing p. If f : U — H is a function
then we say f is H-differentiable at p if there exists a linear function
dpf : H — H such thatd, f(vw) = d, f(v)w for all v,w € ‘H and

o S+ h) = fp) = dpf(R)
h—0 | Al

— 0. (1)

T'he condition d,, f(vw) = d, f(v)w is called H-linearity. We define
the hyperbolic derivative by f'(p) = df,(1). Alternatively, we can
define the derivative by a deleted difference quotient:

f(z) = f(p)

f'(p) = lim —

H*XDz—p

Since z = = + jy in H we have {1, j} as the basis for . Advanced
calculus gives d,, f(1) = (9, f)(p) whereas d, f(j) = (0, f)(p). Thus,

as d, f(1) =d,f(jj) = dpf(j)i,
df of of

dz Ox _]8y'

If f=u+jvthend,f = (9,f)j yields H-Cauchy-Riemann Eqns:

Uy U Uy U
ux:vy&uy:vxiJf:[UfB vy]:[vx ux]
x Y x x

The Jacobian of an H-differentiable function is in the regular repre-
sentation of H. Indeed, J;(p) = M(f'(p)).

Laplace-like equation for H:
In complex analysis the CR-eqns for f = u + ¢v are given by f, =

ife- Then fu, = (fy)y = (ifs)y = i(fy)e = 1°fse then as i = —1
we obtain the Laplace Equation f,, + f,, = 0. In contrast, for H-
differentiable f = u + jv we derive

Thisis a speed one wave equation (think of y as time and z as space).

If f = u+ jv then both u and v are solutions of the wave
equation. Component functions of H-differentiable func-
tion solve the wave equation.

Speed c Wave Equation:

Consider the wave equation ¢

Urpr = Upe. Define:
We=A{x+kt]|z,t c R, k? 202}
Observe W, -differentiable f solve the speed-c wave equation:
k2 =c® = Cugy = U (2)

Since W, is isomorphic to R x Rby ®(x + kt) = (x + ct,x — ct) we
can trade each W, -differentiable function f : WW. — W, for a corre-
sponding with a R x R differentiable function F'via f = @~ 1o o ®
where F' : R x R — R x R. The structure of R x R-differentiable
functions is rather simple; F'(a,b) = (Fi(a), F2(b)) where F}, F; are
differentiable functions on R. Thus,

flx+kt) =0 Y F(®(x + kt))) (3)
=& Y (Fi(z+ct), Fa(z —ct))

= C(Fi(w+ct) + Fy(a —ct) +

The above is the well-known d’Alembert’s solution to the wave-
equation.

g (Fi(x + ct) — Fy(x — ct))

NON-CONFORMAL MAPPING

Conformal Mapping:
In complex analysis the technique of conformal mapping allows us

to find interesting solution of Laplace’s Equation % + giy’g = 0. For

example, the map f(z) =1 (Z—H) can be visualized by:

1—=z

Laplace’s Equation for the half-plane is with w = u + iv is solved by

1
U(w) = — cot™*(v/u)
7
Notice, if w = u+ 1w =uwefind V¥V =1 foru < 0and ¥ = 0O for
u > 0. Then ¢(z) = ¥U(f(2)) gives a solution of Laplace’s Equation
on the disk where ¢ = 1 on the upper semi-circle whereas ¢ = 0 on

the lower semi-circle.
e the term conformal means angle-preserving

Non-Conformal Mapping:

In hyperbolic calculus we can also study a hyperbolic differentiable
map given by w = f(z). If f : S — T and we solve the wave-
equation on 7' subject to appropriate boundary conditions by ¥ =
U(w) then ¢(z) = ¥(f(z)) defines a solution of the wave equation
on S with matching boundary conditions. This is the hyperbolic
analog of conformal mapping. However, we should caution, hyper-
bolic maps do not preserve the angle between curves. For instance:
f(2) = (5 +j) 2 maps the orthogonal grid on the left to the slanted
grid on the right:

Strategy:

e Study component functions of hyperbolic differentiable maps
to find solutions of the wave equation. Level curves of the com-
ponent function are a convenient visual guide for the wide va-
riety of functions possible in the function theory of H. These
will form template solutions for our H-conformal mapping
technique,

® (Future Work) Study fractional linear transformations on H as
well as other maps to understand standard methods for the
transport of curves on H.

Wave Functions:

If f(z) = Asin(kx — wt) — jAsin(kx — wt) then the level curves of
the component functions f(z) = Asin(kx —wt) and —Asin(kxz — wt).
Now what you can notice here is when rewritten a curiosity appears:
A(1 — j)sin(kx — wt). Visually:
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LEVEL CURVES OF HYPERBOLIC MAPS

Square Function:
If 22 = x* + y? + 2jzy then the level curves of the component func-
tions of f(z) = 2° are z° + y* = ¢; and 2zy = ¢;. Visually:
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Cube Function:
If f(2) = 2° = 2% + 3zy? + j(3z°y + y°) then the level curves of
the component functions f(z) = 2° are z° = 2° + 3ay® = ¢; and

31°y 4+ y° = ¢y. Visually:
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Log Function:

If f(2) = Log(z) = Log(xz*—y?)+jtanh~1(y/z) then the level curves
of the component functions f(z) = Log(z) are Log(z) = Log(z* —y?)
and (tanh™1)(y/x). Visually:
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Exponential Function:

If f(z) = e* = e*(cosh(y) + jsinh(y)) then the level curves of the
component functions f(z) = e* are e* = e®cosh(y) and e*sinh(y)
Visually:
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More Wave Functions:

When analyzing wave functions more carefully we discover that
certain patterns arise naturally from solutions to the wave equa-
tion. f(z) = sin(kx)cos(wt) + jcos(kx)sin(wt) is a solution in
which fascinating geometries arise from studying the level curves
sin(kx)cos(wt) and cos(kx)sin(wt) respectfully. Visually:
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